656 research outputs found

    Black holes in Godel universes and pp-waves

    Full text link
    We find exact rotating and non-rotating neutral black hole solutions in the Godel universe of the five dimensional minimal supergravity theory. We also describe the embedding of this solution in M-theory. After dimensional reduction and T-duality, we obtain a supergravity solution corresponding to placing a black string in a pp-wave background.Comment: 9 pages, 1 figur

    The Gravity Dual of a Density Matrix

    Full text link
    For a state in a quantum field theory on some spacetime, we can associate a density matrix to any subset of a given spacelike slice by tracing out the remaining degrees of freedom. In the context of the AdS/CFT correspondence, if the original state has a dual bulk spacetime with a good classical description, it is natural to ask how much information about the bulk spacetime is carried by the density matrix for such a subset of field theory degrees of freedom. In this note, we provide several constraints on the largest region that can be fully reconstructed, and discuss specific proposals for the geometric construction of this dual region.Comment: 19 pages, LaTeX, 8 figures, v2: footnote and reference adde

    The Origin of Hot Subluminous Horizontal-Branch Stars in Omega Centauri and NGC 2808

    Full text link
    Hot subluminous stars lying up to 0.7 mag below the extreme horizontal branch (EHB) are found in the UV color-magnitude diagrams of omega Cen and NGC 2808. Such stars are unexplained by canonical HB theory. In order to explore the origin of these subluminous stars, we evolved a set of low-mass stars from the main sequence through the helium-core flash to the HB for a wide range in the mass loss along the red-giant branch (RGB). Stars with the largest mass loss evolve off the RGB to high effective temperatures before igniting helium in their cores. Our results indicate that the subluminous EHB stars, as well as the gap within the EHB of NGC 2808, can be explained if these stars undergo a late helium-core flash on the white-dwarf cooling curve. Under these conditions the flash convection will penetrate into the stellar envelope, thereby mixing most, if not all, of the envelope hydrogen into the hot helium- burning interior. This phenomenon is analogous to the "born-again" scenario for producing hydrogen-deficient stars during a very late helium-shell flash. "Flash mixing" greatly enhances the envelope helium and carbon abundances and, as a result, leads to an abrupt increase in the HB effective temperature. We argue that the EHB gap in NGC 2808 is caused by this theoretically predicted dichotomy in the HB morphology. Using new helium- and carbon-rich stellar atmospheres, we show that the flash-mixed stars have the same reduced UV flux as the subluminous EHB stars. Moreover, we demonstrate that models without flash mixing lie, at most, ~0.1 mag below the EHB and hence fail to explain the observations. Flash mixing may also provide a new evolutionary channel for producing the high gravity, He-rich sdO and sdB stars.Comment: 8 pages, 5 figures, to appear in "Omega Centauri: a Unique Window into Astrophysics" (Cambridge, August, 2001), ASP Conf. Ser., edited by F. van Leeuwen, G. Piotto, and J. Hughe

    Holographic models of de Sitter QFTs

    Full text link
    We describe the dynamics of strongly coupled field theories in de Sitter spacetime using the holographic gauge/gravity duality. The main motivation for this is to explore the possibility of dynamical phase transitions during cosmological evolution. Specifically, we study two classes of theories: (i) conformal field theories on de Sitter in the static patch which are maintained in equilibrium at temperatures that may differ from the de Sitter temperature and (ii) confining gauge theories on de Sitter spacetime. In the former case we show the such states make sense from the holographic viewpoint in that they have regular bulk gravity solutions. In the latter situation we add to the evidence for a confinement/deconfinement transition for a large N planar gauge theory as the cosmological acceleration is increased past a critical value. For the field theories we study, the critical acceleration corresponds to a de Sitter temperature which is less than the Minkowski space deconfinement transition temperature by a factor of the spacetime dimension.Comment: 35 pages, LaTeX, 4 figures, v2: refs adde

    Acceleration-Induced Deconfinement Transitions in de Sitter Spacetime

    Full text link
    In this note, we consider confining gauge theories in D=2,3,4D=2,3,4 defined by S2S^2 or T2T^2 compactification of higher-dimensional conformal field theories with gravity duals. We investigate the behavior of these theories on de Sitter spacetime as a function of the Hubble parameter. We find that in each case, the de Sitter vacuum state of the field theory (defined by Euclidian continuation from a sphere) undergoes a deconfinement transition as the Hubble parameter is increased past a critical value. In each case, the corresponding critical de Sitter temperature is smaller than the corresponding Minkowski-space deconfinement temperature by a factor nearly equal to the dimension of the de Sitter spacetime. The behavior is qualitatively and quantitatively similar to that for confining theories defined by S1S^1 compactification of CFTs, studied recently in arXiv:1007.3996.Comment: 25 pages, 7 figure
    corecore